Targeting nanotherapeutics to the tumor microenvironment: how accurately can we aim?

As a growing body of experimental data are available, we are becoming aware of many hurdles that therapeutic nanotechnologies must overcome before entering the clinic.

The scientific and medical communities generally agree that targeting drugs to diseased organs, at therapeutically relevant doses, is key for a successful treatment. Nanotechnologies are playing an important role in realizing this goal. With more than 40 nano-sized drugs on the market [1], and many others in the bench-to-bedside pipeline, we can look proudly at the evolution of this field. However, as a growing body of experimental data are available, we are becoming aware of many hurdles that therapeutic nanotechnologies must overcome before entering the clinic [2].

Liposome-encapsulated doxorubicin (Doxil®) highlighted two major advantages that nanoscale drug-delivery systems present: tumor targeting and reduced cardiotoxicity [3]. Utilizing the enhanced permeability and retention effect, these 100-nm liposomes infiltrate solid tumors via their discontinuous vasculature [4]. From a formulation point of view, Doxil combined two important concepts: remote loading and stealth properties. The former ensures a high concentration of the drug inside each nanoparticle [5], while the latter utilizes PEG to avoid reticuloendothelial clearance and to increase circulation time of the nanoparticles [6]. However, Doxil also raised nano-associated clinical complications, including severe hand and foot syndrome and complement activation in many patients [7,8]. These issues were addressed clinically by limiting the administered dose and by screening patients for their complement activity before beginning a treatment cycle. Recently, Barenholz (an inventor of Doxil) and colleagues reported the development of a new liposomal formulation that alleviates hand and foot syndrome [9]. Interestingly, social networks (such as [101]), in which patients share their treatment experiences, are playing an important role in identifying and dealing with these issues. Failed attempts to reproduce the clinical and financial success of Doxil, using identical liposomes loaded with different drugs, emphasized the need for drug- and disease-specific tailoring of nanotherapeutics.

The next major milestone in the field was Abraxane®, 130-nm particles composed of albumin-coated paclitaxel, which was approved for the treatment of breast and lung cancers. Unlike Doxil, this system utilizes receptor-mediated transport mechanisms to penetrate tumor cells [10]. This achievement highlights the importance cell-surface ligands can have in the targeting process; giving enthusiasm to the many groups that are developing nanoparticles decorated with disease-specific ligands. Such efforts matured recently with the clinical evaluation of nanoparticles targeted to the prostate-specific membrane antigen [11].

Another way to direct nanoparticles towards disease sites is by conjugating them to metallic components and subsequently controlling their biodistribution with magnetic fields. To penetrate the tissue, researchers used micron-scale gas bubbles conjugated to therapeutic nanoparticles. Once at the target site, the bubbles are disrupted with ultrasound, thereby creating a forceful jet that propels the nanoparticles into the tissue. However, targeted therapies must improve, specifically, new systems need to be capable of autonomously detecting, targeting and treating malignant cells deep inside tissue [12].

While targeting strategies can help direct nanotherapeutics towards the disease site, they are limited in their ability to control the drug-release profile at the target. Focused drug
release can have many clinical advantages, such as reducing off-target effects and side effects, pulsating drug release over prolonged periods of time, or, alternatively, flushing the target tissue with a high-drug dose to treat severe conditions.

Nanocarriers that are sensitive to external stimuli have attracted great interest. A popular trigger is ultrasound, due to the fact that it is clinically available and that it can induce thermomechanical effects in most soft tissues. However, despite the great promise, these systems are intimidating to potential investors that envision a drug/device combination and the regulatory challenges associated with it. Alliances between active pharmaceutical ingredient manufacturers and medical device companies, as well as an open dialog with the regulatory agencies, will refuel these important efforts. From a scientific perspective, creating drug/device combinations will address unmet clinical needs and grant a significant therapeutic advantage over existing treatments. For example, releasing a highly toxic drug from nanocarriers at the target site, thereby avoiding damage to vital organs, can meet these criteria. Another promising approach is to use this mode to deliver delicate or degradable compounds, such as siRNA and proteins. Different energy sources, such as microwaves, infrared rays and radiowaves are being developed as new triggers that have the capacity to interact with organic and inorganic nanomaterials [13]. These triggers will enable co-stimulating multiple processes, such as drug release and tissue ablation [14].

Future nanotherapeutics must exhibit improved targeting and enhanced therapeutic efficacy. Meeting these requirements is being approached by the development of ‘hybrid’ nanoparticulate systems... [15, 16, 17]...

Our collective research and understandings in the field of nanotechnology are converging into sophisticated multicompontent systems [20]. Not just the work of a single group, but a global effort in the fields of material science, chemical engineering, biomedicine and biology will facilitate new medical capabilities that will impact our lives for the better.

Financial & competing interests disclosure
The author has no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.
Targeting nanotherapeutics to the tumor microenvironment: how accurately can we aim?

References


Website